Home
Class 12
MATHS
In the expansion of (x/(cos theta)+1/(x ...

In the expansion of `(x/(cos theta)+1/(x sin theta))^16 if l_1` is she last value of the there integers of x values `pi/8 le theta le pi/4 and l_2` to the value of the can integers of x where `x/16 le theta le pi/8,` thne the value of `l_1,l_2` is

Promotional Banner

Similar Questions

Explore conceptually related problems

In the expansion of ((x)/(costheta)+(1)/(xsintheta))^(16) , if l_(1) is the least value of the term independent of x when (pi)/(8) le theta le (pi)/(4) and l_(2) is the least value of the term independent of x when (pi)/(16) le theta le (pi)/(8) , then the value of (l_(2))/(l_(1)) is

In the expansion of ((x)/(costheta)+(1)/(xsintheta))^(16) , if l_(1) is the least value of the term independent of x when (pi)/(8) le theta le (pi)/(4) and l_(2) is the least value of the term independent of x when (pi)/(16) le theta le (pi)/(8) , then the value of (l_(2))/(l_(1)) is

In the expansion of ((x)/(costheta)+(1)/(xsintheta))^(16) , if l_(1) is the least value of the term independent of x when (pi)/(8) le theta le (pi)/(4) and l_(2) is the least value of the term independent of x when (pi)/(16) le theta le (pi)/(8) , then the value of (l_(2))/(l_(1)) is

In the expansion of ((x)/(costheta)+(1)/(xsintheta))^(16) , if l_(1) is the least value of the term independent of x when (pi)/(8) le theta le (pi)/(4) and l_(2) is the least value of the term independent of x when (pi)/(16) le theta le (pi)/(8) , then the value of (l_(2))/(l_(1)) is

Solve sin^2 theta- cos theta =1/4 " for " theta and write the value of theta in the interval 0 le theta le 2 pi

If 6sin^(2)theta - sin theta = 1 and 0 le theta le pi , what is the value of sin theta ?

For 0 le theta le pi/2 the maximum value of sin theta + cos theta is

Solve : 2 cos^(2)theta + sin theta le 2 , where pi//2 le theta le 3pi//2.

Solve : 2 cos^(2)theta + sin theta le 2 , where pi//2 le theta le 3pi//2.

Solve : 2 cos^(2)theta + sin theta le 2 , where pi//2 le theta le 3pi//2.