Home
Class 12
MATHS
यदि z=x+iy और w=((1-iz))/((z-i)), तब ...

यदि `z=x+iy` और `w=((1-iz))/((z-i))`, तब `|w|=1 सम्मिश्र तल में इंगित करता है कि

Promotional Banner

Similar Questions

Explore conceptually related problems

If z=x+i y and w=(1-i z)/(z-i) , show that |w|=1 z is purely real.

If z=x+iy and w=(1-iz)/(z-i), show that |w|=1o+_(z) is purely real.

If z=x+i ya n dw=(1-i z)//(z-i) , then show that |w|=1 z is purely real.

If z = x + iy and w=(1-iz)/(z-i) , show that : |w|=1 implies z is purely real.

Let w=[(z-1)/(1+iz)]^(n),n in I, then |w|=1 for

If w=(z)/(z-(1)/(3)i) and |w|=1, then z lies on

If z=x+i y and w=(1-i z)//(z-i) and |w| = 1 , then show that z is purely real.