Home
Class 11
MATHS
In A B C , show that a^2(s-a)+b^2(s-b)...

In ` A B C ,` show that `a^2(s-a)+b^2(s-b)+c^(2)(s-c))=4R (a+r sin (A/2)sin( B/2)sin( C/2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

In A B C , show that a^2(s-a)+b^2(s-b)+c^(2)(s-c))=4R (1+r sin (A/2)sin( B/2)sin( C/2))

In ABC, show that a^(2)(s-a)+b^(2)(s-b)+c^(2)(s-c))=4R(a+r sin((A)/(2))sin((B)/(2))sin((C)/(2)))

In a DeltaABC" show that "(b^(2)-c^(2))/(a^(2))=(sin(B-C))/(sin(B+C))

Show that: sin A + sin B +sin C - sin(A+B+C)=4 sin ((A+B)/2)sin ((B+C)/2)sin ((C+A)/2)

In DeltaABC show that (b^(2)-c^(2))/(a^(2))=(sin(B-C))/(sin(B+C))

If A + B + C = 2S, prove that sin (S- A) sin (S - B) +sin S sin (S-C) = sin A sin B

Show that (a sin (B-C))/( b^(2) - c^(2)) - ( b sin (C-A))/( c^(2) - a^(2)) - ( c sin ( A- B))/( a^(2) -b^(2))