Home
Class 12
MATHS
If (logx)/(b-c)=(logy)/(c-a)=(logz)/(a-b...

If `(logx)/(b-c)=(logy)/(c-a)=(logz)/(a-b)` prove that
(a) `x^(a)y^(b)z^(c )=1`
(b) `x^(b+c).y^(c+a).z^(a+b)=1`
(c ) `x^(b^(2)+bc+c^(2)`.`y^(c^(2)+ca+a^(2))`.`z^(a^(2)+ab+b^(2))`=1

Promotional Banner

Similar Questions

Explore conceptually related problems

If (logx)/(b-c)=(logy)/(c-a)=(logz)/(a-b) ,then the value of x^(b+c).y^(c+a).z^(a+b) is

If logx/(a+b-2c)=logy/(b+c-2a)=logz/(a+c-2b) , then prove that xyz=1

If (log x)/(b-c) = (log y)/(c-a) = (log z)/(a-b) , then prove that x^(b+c).y^(c+a).z^(a+b) = 1

If (log x)/(b-c) = (log y)/(c-a) = (log z)/(a-b) , then prove that x^(b^2+bc+c^2).y^(c^2+ca+a^2).z^(a^2+ab+b^2)=1

If (logx)/(b-c)=(logy)/(c-a)=(logz)/(a-b) , then which of the following is/are true? z y z=1 (b) x^a y^b z^c=1 x^(b+c)y^(c+b)=1 (d) x y z=x^a y^b z^c

If (logx)/(a^2+a b+b^2)=(logy)/(b^2+b c+c^2)=(logz)/(c^2+c a+a^2), then x^(a-b)*y^(b-c)*z^(c-a)=

If log x(log x)/(a^(2)+ab+b^(2))=(log y)/(b^(2)+bc+c^(2))=(log z)/(c^(2)+ca+a^(2)) then x^(a-b)*y^(b-c)*z^(c-a)=

If x=b-c+a, y=c-a+b, z=a-b+c , then prove that (b-a) x + (c-b)y +(a-c)z=0

If (x)/((b-c)(b+c-2a))=(y)/((c-a)(c+a-2b))=(z)/((a-b)(a+b-2c)) then the value of (x+y+z) is :