Home
Class 12
MATHS
if a = (2,1,-1) , b= (1,-1,0) , c = (5,-...

if a = (2,1,-1) , b= (1,-1,0) , c = (5,-1,1) then unit vector parallel to a + b -c but opposite direction

Promotional Banner

Similar Questions

Explore conceptually related problems

If a=(2,1,-1), b=(1,-1,0),c=(5,-1,1), then what is the unit vector parallel to a+b-c in the opposite direction?

If bar(a)=(2,1,-1),bar(b)=(1,-1,0),bar(c)=(5,-1,1) then the unit vector parallel to bar(a)+bar(b)-bar(c) , but in opposite direction is

If bar(a)=(2,1,-1),bar(b)=(1,-1,0),bar(c)=(5,-1,1) then the unit vector parallel to bar(a)+bar(b)-bar(c) , but in opposite direction is

If bar(a)=(2,1,-1),bar(b)=(1,-1,0),bar(c)=(5,-1,1) then the unit vector parallel to bar(a)+bar(b)-bar(c) but in the opposite direction is

If bar(a)=(2,1,-1),bar(b)=(1,-1,0),bar(c)=(5,-1,1) then the unit vector parallel to bar(a)+bar(b)-bar(c) but in the opposite direction is

If bar(a)=(2,1,-1),bar(b)=(1,-1,0),bar(c)=(5,-1,1) then the unit vector parallel to bar(a)+bar(b)-bar(c) but in the opposite direction is

If bara=(2,1,-1),bar(b)=(1,-1,0),bar(c)=(5,-1,1) then the unit vector parallel to bar(a)+bar(b)-bar(c) ,but in the opposite direction is