Home
Class 12
MATHS
IF a^x=b,b^y=c,c^z=a,x=(logba)^(k1),y=(l...

IF `a^x=b,b^y=c,c^z=a,x=(log_ba)^(k1),y=(log_cb)^(k2),z=(log_ac)^(k3)`, find the minimum value of `3k_1+6k_2+12k_3`.

Promotional Banner

Similar Questions

Explore conceptually related problems

IF a^x=b,b^y=c,c^z=a,x=log_b a^(k1),y=log_c b^(k2),z=log_a c^(k3) , find the minimum value of 3k_1+6k_2+12k_3 .

If a^(x) = b , b^(y) = c, c^(z) = a, x = log_(b) a^(k_(1)) , y = log_(c)b^(k_(2)), z = log _(a) c^(k_(3)), , then find K_(1) K_(2) K_(3) .

If a^(x) = b , b^(y) = c, c^(z) = a, x = log_(b) a^(k_(1)) , y = log_(c)b^(k_(2)), z = log _(a) c^(k_(3)), , then find K_(1) K_(2) K_(3) .

If a^x=b , b^y=c ,c^z=a and x=(log)_b a^2, y=(log)_c b^3,z=(log)_a c^k , where a,b, c >0 and a , b , c!=1 then k is equal to a. 1/5 b. 1/6 c. (log)_(64)2 d. (log)_(32)2

if log_(k)x.log_(5)k=log_(x)5,k!=1,k>0, then find the value of x

If a^x=b , b^y=c ,c^z=a and x=(log)_b a^2; y=(log)_c b^3& z=(log)_a c^k , where a,b, c >0 & a , b , c!=1 then k is equal to a. 1/5 b. 1/6 c. (log)_(64)2 d. (log)_(32)2

If a^x=b , b^y=c ,c^z=a and x=(log)_b a^2; y=(log)_c b^3& z=(log)_a c^k , where a,b, c >0 & a , b , c!=1 then k is equal to a.1/5 b. 1/6 c.(log)_(64)2 d. (log)_(32)2

If log_(a)b=1/2,log_(b)c=1/3" and "log_(c)a=(K)/(5) , then the value of K is

If (log_(5) K) (log_(3) 5) (log_(k) x ) = k , then the value of x if k = 3 is