Home
Class 11
PHYSICS
Two metallic spheres S1 and S2 are made ...

Two metallic spheres `S_1 and S_2` are made of the same material and have got identical surface finish. The mass of `S_1` is thrice that of `S_2`. Both the spheres are heated to the same high temperature and placed in the same room having lower temperature but are thermally insulated from each other. the ratio of the initial rate of cooling of `S_1` to that of `S_2` is
`(a)1/3 (b)1/(sqrt3) (c) (sqrt3)/1 (d) (1/3)^(1/3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Two metallic spheres S_1 and S_2 are mode of the same material and have got identical surface finish. The mass of S_1 is thrice that of S_2. Both the spheres are heated to the same high temperature and placed in the same room having lower temperature but are thermally insulted from each other. The ratio of the initial rate of coiling of S_1 to that of S_2 is

Two metallic sphere A and B are made of same material and have got identical surface finish. The mass of sphere A is four times that of B. Both the spheres are heated to the same temperature and placed in a room having lower temperature but thermally insulated from each other.

Two metallic sphere A and B are made of same material and have got identical surface finish. The mass of sphere A is four times that of B. Both the spheres are heated to the same temperature and placed in a room having lower temperature but thermally insulated from each other.

Two metallic spheres S_(1) and S_(2) made of same material have identical surface finish. The mass of S_(1) is 3 times that of S_(2) . Both are heated to same temperature and are placed in same surroundings. Then ratio of their initial rates of fall of temperature will be

Two metallic spheres A and B are made up of same material and also have identical surfaces. Both spheres are heated to same temperature and are then placed in a chamber which is at a lower temperature, thermally insulated from each other. If ratio of masses of A and B is 3:1, then the ratio of their initial rate of cooling is

"Two metallic spheres" S_(1) "& "S_(2) "area made of same material /The mass of" S_(1) "Is thrice that of" S_(2) "Both of the spere are heated to the same temp and placed in the same ambient .Ratio of initial rate of cooling of" S_(1) "to that of" S_(2)

Two spheres of radii R_(1) and R_(2) are made of the same material and are at the same temperature. The ratio of their thermal capacities is: