Home
Class 12
MATHS
In [0, 1] Lagrange's mean value theorem ...

In `[0, 1]` Lagrange's mean value theorem is not applicable to

Promotional Banner

Similar Questions

Explore conceptually related problems

Given f(x)=4-(1/2-x)^(2/3),g(x)={("tan"[x])/x ,x!=0 1,x=0 h(x)={x},k(x)=5^((log)_2(x+3)) Then in [0,1], lagranges mean value theorem is not applicable to (where [.] and {.} represents the greatest integer functions and fractional part functions, respectively). f (b) g (c) k (d) h

Given f(x)=4-(1/2-x)^(2/3),g(x)={("tan"[x])/x ,x!=0 1,x=0 , h(x)={x}, k(x)=5^((log)_2(x+3)). Then in [0,1], lagranges mean value theorem is not applicable to (a) f (b) g (c) k (d) h (where [.] and {.} represents the greatest integer functions and fractional part functions, respectively).

Given f(x)=4-(1/2-x)^(2/3),g(x)={("tan"[x])/x ,x!=0 1,x=0 , h(x)={x}, k(x)=5^((log)_2(x+3)). Then in [0,1], lagranges mean value theorem is not applicable to (a) f (b) g (c) k (d) h (where [.] and {.} represents the greatest integer functions and fractional part functions, respectively).

Given f(x)=4-(1/2-x)^(2/3),g(x)={("tan"[x])/x ,x!=0 1,x=0 h(x)={x},k(x)=5^((log)_2(x+3)) Then in [0,1], lagranges mean value theorem is not applicable to (where [.] and {.} represents the greatest integer functions and fractional part functions, respectively). f (b) g (c) k (d) h

Given f(x)=4-(1/2-x)^(2/3),g(x)={("tan"[x])/x ,x!=0 1,x=0 h(x)={x},k(x)=5^((log)_2(x+3)) Then in [0,1], lagranges mean value theorem is not applicable to (where [.] and {.} represents the greatest integer functions and fractional part functions, respectively). f (b) g (c) k (d) h

In [0,1] Largrange's mean value theorem is not application to

In [0, 1] the Lagrange's Mean Value Theorem is not applicable to: (a) f(x)={1/2-x ,x<1/2 (1/2-x)^2, xgeq1/2 (b) f(x)=|x| (C) f(x)=x|x| (d) none of these

in [0,1], lagrange mean value theorem is NOT applicable to

Explain why Lagrange's mean value theorem is not applicable to the following functions in the respective intervals : f(x)=|3x+1|,x in[-1,3]