Home
Class 11
MATHS
यदि (c+i)/(c-i)=a+ib, जहाँ c एक वास्तविक...

यदि `(c+i)/(c-i)=a+ib`, जहाँ c एक वास्तविक राशि है तो सिद्ध करें की
`a^(2)+b^(2)=1` और `b/a=(2c)/(c^(2)-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a+ bi = (c + i)/(c-i), a, b , c in R , show that a^(2) + b^(2)=1 and (b)/(a)= (2c)/(c^(2)-1)

If a+ib=(c+i)/(c-i), where c is real,prove that: a^(2)+b^(2)=1 and (b)/(a)=(2c)/(c^(2)-1)

If a+ib= (c+i)/(c-i) , where c is real, prove that a^2+b^2=1 and b/a= (2c)/(c^2-1) .

a,b,c are three positive numbers, such that, (a+b+c) = 20, a^2 +b^2+c^2=152 . The value of (ab+bc+ca) is equal to दिया गया है कि a, b और c धनात्मक वास्तविक संख्याए है | यदि (a+b+c) = 20 है , a^2 +b^2+c^2=152 है, तो (ab+bc+ca) का मान किसके बराबर है ?

If a+i b=(c+i)/(c-i) , where c is real, prove that: a^2+b^2=1 and b/a=(2c)/(c^2-1)dot

If (c+i)/(c-i)= a+ ib , where a, b, c are real, then a^2+ b^2 equals :

if a+b+c = 0, then ((2a^2)/(3bc)+ (2b^2)/(3ca)+(2c^2)/(3ab)) is equal to: यदि a+b+c = 0 है, तो ((2a^2)/(3bc)+ (2b^2)/(3ca)+(2c^2)/(3ab)) बराबर है :

Given, a^(2) =b+c, b^(2)=c + a " & " c^(2) = a + b or (a^(2))/(b+c) = (b^(2))/(c+a) = (c^(2))/(a+b)=1 find (a)/(1+a) + (b)/(1+b) + (c )/(1+c) = ?

Let a,b and c be the fractions such that a prec b prec c . If c is divided by a, the result is 5/2 , which exceeds b by 7/4 . If a+b+c =1 11/12 , then (c-a) will be equal to : मान लीजिये कि a, b और c ऐसे भिन्न है कि a prec b prec c है| यदि c को a से विभाजित किया जाए, तो परिणाम 5/2 आता है जो b से 7/4 अधिक है | यदि a+b+c =1 11/12 है, तो (c-a) का मान किसके बराबर होगा ?