Home
Class 12
MATHS
If cot(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)...

If `cot(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)(xsqrt(6))),\ x!=0`, then possible value of `x` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If cot(sin^(-1)sqrt(1-x^(2)))=sin(tan^(-1)(x sqrt(6))),x!=, then possible value of x is

If cot(sin^(-1)(sqrt((13)/(17))))=sin(tan^(-1)x) then value of x is

If sin^(-1)(2xsqrt(1-x^(2)))-2 sin^(-1) x=0 then x belongs to the interval

If sin^(-1)(2xsqrt(1-x^(2)))-2 sin^(-1) x=0 then x belongs to the interval

Prove 2sin^(-1)x=tan^(-1)((2xsqrt(1-x^2))/(1-2x^2))

cot^(-1)(sqrtcosalpha)-tan^(-1)(sqrt(cosalpha)) =x, x, ge 0 , then sin x equals

Show that, sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,-1/sqrt2lexle1/sqrt2

If f(x) = 2 sin^(-1) sqrt(1-x) + sin^(-1)(2 sqrt(x (1-x))) where x in (0, 1/2) , then f'(x) has the value equal to (i) 2/(xsqrt(1-x)) (ii) 0 (iii) -2/(xsqrt(1-x)) (iv) pi

If f(x) = 2 sin^(-1) sqrt(1-x) + sin^(-1)(2 sqrt(x (1-x))) where x in (0, 1/2) , then f'(x) has the value equal to (i) 2/(xsqrt(1-x)) (ii) 0 (iii) -2/(xsqrt(1-x)) (iv) pi

int(tan(cos^(-1)x)+cot(sin^(-1)x))/(sqrt(1-x^(2)))dx=