Home
Class 11
MATHS
If a, b, c are in A.P, show that (i)a^3+...

If a, b, c are in A.P, show that` (i)a^3+b^3+6abc=8b^3` (ii) `(a+2b-c)(2b+c-a)(a+c-b) =4abc`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are in A.P.,prove that - a^3-8b^3+c^3+6abc=0

If a, b, c are in A.P., prove that : a^3+4b^3+c^3=3b (a^2+c^2) .

If a,b,c are in AP , show that (a+2b-c) (2b+c-a) (c+a-b) = 4abc .

If a, b, c are in A.P., prove that a^(3)+4b^(3)+c^(3)=3b(a^(2)+c^(2)).

If a, b, c are in A.P., prove that a^(3)+4b^(3)+c^(3)=3b(a^(2)+c^(2)).

If a, b, c are In A.P., then show that, (a+2b-c) (2b+c-a)(c+a-b) = 4abc

If a, b, c are in A.P, then show that: \ b c-a^2,\ c a-b^2,\ a b-c^2 are in A.P.

If a+b=c , show that a^(3)+b^(3)+3abc=c^(3)

If a,b,c are in A.P., then show that (i) a^2(b+c), b^2(c+a), c^2(a+b) are also in A.P.

If a ,b ,and c are in A.P., then a^3+c^3-8b^3 is equal to (a). 2a b c (b). 6a b c (c). 4a b c (d). none of these