Home
Class 12
MATHS
If phi(x)=int cot^(4)xdx+(1)/(3)cot^(3)x...

If `phi(x)=int cot^(4)xdx+(1)/(3)cot^(3)x-cot x` and `phi((pi)/(2))=(pi)/(2)` then `phi(x)` is
(A) `pi-x`
(B) `x-pi`
(C) `(pi)/(2)-x`
(D) `x`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(1)/(3)cot^(3)x-cot x+int(cot^(4)x)dx and f((pi)/(2))=(pi)/(2) then f(x)=

int_(0)^((pi)/(2))(1)/(cot x+tan x)dx

lim_(x rarr(pi)/(2))(cot x-cos x)/(((pi)/(2)-x)^(3))=

int_((pi)/(4))^((pi)/(2))e^(x)(log sin x+cot x)dx

Is cot^(-1) (-x) = pi - cot^(-1) x , x in R

If cot^(-1)x+tan^(-1)(1/2)=pi/4 then x is

The range of f(x)=cot^(-1)(log_(1/2)(x^(4)-2x^(2)+3)) is ( (pi)/(2) (3 pi)/(4) 0 (3 pi)/(4) pi) (0 (3 pi)/(4)