Home
Class 13
MATHS
int(cosx-sinx+1-x)/(e^(x)+sinx+x)dx=log(...

`int(cosx-sinx+1-x)/(e^(x)+sinx+x)dx=log_(e)(f(x))+g(x)+C` where C is the constant of integration and f(x) is positive. Then `f(x)+g(x)` has the value equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If int(x(sin x-cos x)-sin x)/(e^(x)+(sin x)x)dx=-ln(f(x))+g(x)+C where C is the constant of integration and f(x) is positive then f(x)+g(x) has the value equal to

If int (cos x-sin x + 1-x)/(e^(x)+sin x+x)dx=ln{f(x)}+g(x)+C , where C is the constant of integrating and f(x) is positive, then (f(x)+g(x))/(e^(x)+sin x) is equal to .......... .

If intxe^(2x)dx is equal to e^(2x)f(x)+c , where c is constant of integration, then f(x) is

If inte^(sinx)((xcos^(3)x-sinx)/(cos^(2)x))dx=e^(sinx)f(x)+c , where c is constant of integration, then f(x)=

int((f'(x)g(x)+f(x)g'(x)))/((1+(f(x)g(x))^(2)))dx is where C is constant of integration

If B=int(1)/(e^(x)+1)dx=-f(x)+C , where C is the constant of integration and e^(f(0))=2 , then the value of e^(f(-1)) is

If int e^(2x)(cos x+7sin x)dx=e^(2x)g(x)+c where c is constant of integration then g(0)+g((pi)/(2))=

If int (x+1)/(sqrt(2x-1))dx = f(x)sqrt(2x-1)+C , where C is a constant of integration, then f(x) is equal to

If I=int(x^(3)-1)/(x^(5)+x^(4)+x+1)dx=(1)/(4)ln(f(x))-ln(g(x))+c (where, c is the constant of integration) and f(0)=g(0)=1 ,then the value of f(1).g(1) is equal to