Home
Class 12
MATHS
In A B C , the coordinates of B are (0,...

In ` A B C ,` the coordinates of `B` are `(0,0),A B=2,/_A B C=pi/3,` and the middle point of `B C` has coordinates `(2,0)dot` The centroid o the triangle is `(1/2,(sqrt(3))/2)` (b) `(5/3,1/(sqrt(3)))` `(4+(sqrt(3))/3,1/3)` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

In ABC, the coordinates of B are (0,0),AB=2,/_ABC=(pi)/(3), and the middle point of BC has coordinates (2,0) .The centroid o the triangle is ((1)/(2),(sqrt(3))/(2))(b)((5)/(3),(1)/(sqrt(3)))(4+(sqrt(3))/(3),(1)/(3))( d) none of these

Given b=2,c=sqrt(3),/_A=30^(0), then inradius of o+ABC is (sqrt(3)-1)/(2) (b) (sqrt(3)+1)/(2) (c) (sqrt(3)-1)/(4) (d) none of these

The value of lim_(x rarr2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2) is (1)/(8sqrt(3))(b)(1)/(4sqrt(3)) (c) 0 (d) none of these

(sqrt(3)-(1)/(sqrt(3)))^(2) simplifies to (3)/(4)(b)(4)/(sqrt(3))(c)(4)/(3) (d) None of these

If A(1,p^(2)),B(0,1) and C(p,0) are the coordinates of three points,then the value of p for which the area of triangle ABC is the minimum is (1)/(sqrt(3))( b) -(1)/(sqrt(3))(1)/(sqrt(2)) (d) none of these

If y=|cos x|+|sin x|, then (dy)/(dx)atx=(2 pi)/(3) is (1-sqrt(3))/(2)(b)0(c)(1)/(2)(sqrt(3)-1) (d) none of these

In A B C , if the orthocentre is (1,2) and the circumcenter is (0, 0), then centroid of A B C) is (1/2,2/3) (b) (1/3,2/3) (2/3,1) (d) none of these

If the vertices of a triangle are (sqrt(5),0) ,sqrt(3),sqrt(2)), and (2,1), then the orthocentre of the triangle is (sqrt(5),0) (b) (0,0)(sqrt(5)+sqrt(3)+2,sqrt(2)+1)( d) none of these

If the sides of a right-angled triangle are in A.P., then the sines of the acute angles are 3/5,4/5 b. 1/(sqrt(3)),sqrt(2/3) c. 1/2,(sqrt(3))/2 d. none of these

The distance between the orthocentre and circumcentre of the triangle with vertices (1,2),\ (2,1)\ a n d\ ((3+sqrt(3))/2,(3+sqrt(3))/2) is a. 0 b. sqrt(2) c. 3+sqrt(3) d. none of these