Home
Class 12
MATHS
The primitive of the function f(x)= x | ...

The primitive of the function `f(x)= x | cos x|`, when `pi/2 lt x lt pi` is given by

Promotional Banner

Similar Questions

Explore conceptually related problems

The primitive of the function f (x) =(2x+1)|cosx| , when (pi)/(2)ltxltpi is given by

The primitive of the function f(x)=(2x+1)|sin x| , when pi lt x lt 2 pi is

Find the local maxima and local minima of the functions: (i) f(x) = (sin x - cos x), " When " 0 lt x lt (pi)/(2) (ii) f(x) = (2 cos x + x), " when " 0 lt x lt pi

Find the maximum and minimum values of the function f(x) = x+ sin 2x, (0 lt x lt pi) .

Find the local maxima and local minima of the functions: (i) f(x) = sin 2x, " when " 0 lt x lt pi (ii) f(x) = (sin 2x -x), " when " - (pi)/(2) le x le (pi)/(2)

In the interval ((pi)/(4), (11 pi)/(12)) , then function f (x) = sin 3x - cos 3x, 0 lt x lt pi is:

Find the intervals in which function f(x) = sin x-cos x, 0 lt x lt 2pi is (i) increasing, (ii) decreasing.

Test the function f(x)=tan x +cot" x, where "0 lt x lt pi/2 , for increase and decrease.

Find the intervals in which the function f given by f(x)=sin x-cos x, 0 lt x lt 2 pi is strictly increasing or strictly decreasing.