Home
Class 9
MATHS
Simplify: (3^(n+1))/(3^(n(n-1)))-:(9^(n+...

Simplify: `(3^(n+1))/(3^(n(n-1)))-:(9^(n+1))/((3^(n+1))^((n-1)))`

Promotional Banner

Similar Questions

Explore conceptually related problems

(3^nxx9^(n+1))/(3^(n-1)xx9^(n-1))

Simplify : (3xx9^(n+1)-9xx3^(2n))/(3xx3^(2n+3)-9^(n+1))

Simplify the following: (3^(n)x9^(n+1))/(3^(n-1)x9^(n-1)) (ii) (5x25^(n+1)-25x5^(2n))/(5x5^(2n+3)-(25)^(n+1))

(3xx9^(n+1)-9xx3^(2n))/(3xx3^(2n+3)-9^(n+1))

(2.3^(n+1)+7.3^(n-1))/(3^(n+1)-2((1)/(3))^(1-n))=

Simplify. ((n + 3)!) / ((n^2 - 4) (n +1)!)

Simplify :(3xx27^(n+1)+9xx3^(3n-1))/(8xx3^(3n)-5xx27^(n))

Simplify : (3xx27^(n+1)+9xx3^(3n-1))/(8xx3^(3n)-5xx27^(n))

If A=[(1,1,1),(1,1,1),(1,1,1)] , prove that A^(n)=[(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1))],n in N .