Home
Class 12
MATHS
int(1+x)/(x^2)dx+int(1-y)/(y^2)d y...

`int(1+x)/(x^2)dx+int(1-y)/(y^2)d y`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(1+x)/(x^(2))dx+int(1-y)/(y^(2))dy

Let y=y(x) y(1)=1 and y(e)=e^(2) . Consider J=int(x+y)/(xy)dy I=int(x+y)/(x^(2))dx, J-I=g(x) and g(1)=1 then the value of g(e) is

Let y=y(x) , y(1)=1 and y(e)=e^(2) .Consider J=int(x+y)/(xy)dy , I=int(x+y)/(x^(2))dx J-I=g(x) and g(1)=1 then the value of g(e) is

Let y=y(x) , y(1)=1 and y(e)=e^(2) . Consider J=int(x+y)/(xy)dy , I=int(x+y)/(x^(2))dx , J-I=g(x) and g(1)=1 then the value of g(e)

If int_(0)^(1)f(x)dx=1 and int_(1)^(2)f(y)dy=2 , then int_(0)^(2)f(z)dz=

int(e^(y))/(2+e^(y))dy=int(1)/(x+1)dx+c'log|2+e^(y)|=log|x+1|!=log c

If y= (sin^(-1) x)^2 , then (1-x^2) (d^2 y)/(dx^2) - x (dy/dx) = ..........

Area bounded by the curves y^2=4x and y=2x is equal to (A) int_0^1(2sqrt(x)-2x)dx (B) 1/3 (C) 2/3 (D) int_0^2(y/2-y^2/4)dy

Area bounded by the curves y^2=4x and y=2x is equal to (A) int_0^1(2sqrt(x)-2x)dx (B) 1/3 (C) 2/3 (D) int_0^2(y/2-y^2/4)dy

If int_(y)^(y)cos t^(2)dt=int_(0)^(x^(2))(sin t)/(t)dx, the prove that (dy)/(dx)=(2sin x^(2))/(x cos y^(2))