Home
Class 12
MATHS
Let f(x) be a polynomial. Then, the s...

Let `f(x)` be a polynomial. Then, the second order derivative of `f(e^x)` is `f"(e^x)e^(2x)+f'(e^x)e^x` (b) `f"(e^x)e^x+f'(e^x)` (c) `f"(e^x)e^(2x)+f"(e^x)e^x` (d) `f"(e^x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f (x) be a polynomial in x, then the second derivative of f(x^(e)) is

Let f(x) be a polynomial in x. Then the second derivative of f(e^(x))w.r.t.x is f''(e^(x))*e^(x)+f'(e^(x))f''(e^(x))*e^(2x)+f'(e^(x))*e^(2x)f''(e^(x))e^(2x)(d)f''(e^(x))*e^(2x)+f'(e^(x))*e^(x)

Let f(x) be a polynomial in x . Then the second derivative of f(e^x)wdotrdottdotxi s f^(e^x)dote^x+f^(prime)(e^x) f^(e^x)dote^(2x)+f^(prime)(e^x)dote^(2x) f^(e^x)e^(2x) (d) f^(e^x)dote^(2x)+f^(prime)(e^x)dote^x

Let f(x) be a polynomial in x.They the derivative of f(e^(x)) is given by :

The derivative of f(x) = e^(e^(x^(2))) is

The domain of f(x) is, if e^(x)+e^(f(x))=e

The domain of f(x) is, if e^(x)+e^(f(x))=e

The function f:R rarr R defined by f(x)=(e^(|x|)-e^(-x))/(e^(x)+e^(-x)) is

if e^(x)+e^(f(x))=e then for f(x)

f(x)=e^x-e^(-x) then find f'(x)