Home
Class 10
MATHS
If "cosec" theta- sin theta=m^(3) and se...

If `"cosec" theta- sin theta=m^(3) and sec theta-cos theta=n^(3)`, then prove that `m^(2)n^(2)(m^(2)+n^(2))=1.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If "cosec" theta - sin theta = a^(3) and sec theta - cos theta = b^(3) , then prove that a^(2)b^(2)(a^(2) + b^(2))= 1.

If " cosec"theta-sin theta=m and sec theta-cos theta=n , then prove that (m^(2)n)^((2)/(3))+(mn^(2))^((2)/(3))=1.

If cos ec theta-sin theta=I and sec theta-cos theta=m then prove that I^(2)m^(2)(I^(2)+m^(2)+3)=1

If cosec theta- sin theta = m and sec theta - cos theta = n , prove that: (m^(2)n)^(2/3)+(n^(2)m)^(2/3)=1 .

If cos ec theta-sin theta=m and sec theta-cos theta=n prove that (m^(2)n)^((2)/(3))+(mn^(2))^((2)/(3))=1

If "cosec" theta - sin theta = m and sec theta - cos theta = n, then what is m^(4/3) n^(2/3) +m^(2/3) n^(4/3) equal to ?

If a cos theta+b sin theta=m and a sin theta-b cos theta=n, prove that a^(2)+b^(2)=m^(2)+n^(2)

If cos ec theta - sin theta = m and sec theta - cos theta = n, then show that (m ^(2) n ) ^(2//3) + (mn ^(2)) ^( 2//3) = 1.

If cos ec theta-sin theta=I and sec theta-cos theta-cos theta=m prove that I^(1)m^(2)(I^(2)+m^(2)+3)=1

If a cos theta+b sin theta=m and a sin theta-b cos theta=n, Prove that a^(2)+b^(2)=m^(2)+n^(2)