Home
Class 12
MATHS
If f(1) =g(1)=2, then lim(xrarr1) (f(1)g...

If `f(1) =g(1)=2`, then `lim_(xrarr1) (f(1)g(x)-f(x)g(1)-f(1)+g(1))/(f(x)-g(x))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x), g(x) be differentiable functions and f(1) = g(1) = 2, then : lim_(x rarr 1) (f(1) g(x) - f(x) g(1) - f(1) + g(1))/(g(x) - f(x)) equals :

If f(a) = 2 , f ' (a) = 1 , g (a) = -1 , g'(a) = 2 , then lim_(x to a) (g (x) * f (a) - g (a) * f(x))/( x- a) is equal to

f(a)=2,f'(a)=1,g(a)=-1,g'(a)=-2 then lim_(x rarr oo)(g(x)f(a)-g(a)f(x))/(x-a), is

If f (a) =2, f '(a) =1, g (a) =-3 .g'(a) =-1 , then the value of lim _(xtoa)(f(a) g(x) -g(a)f(x))/(a-x) is equal to-

If G(x)=-sqrt(25-x^(2)) , then lim_(xrarr1) (G(x)-G(1))/(x-1)=?

If f(a)=-1,f'(a)=4,g(a)=1,g'(a)=-1 then lim_(xtoa)(g(x)f(a)-g(a)f(x))/(x-a)

If f(a)=2 f'(a)=1 g(a)=-1 g'(a)=2 then lim_(xtoa)(g(x)f(a)-g(a)f(x))/(x-a) is

If f(a)=2 f'(a)=1 g(a)=-1 g'(a)=2 then lim_(xtoa)(g(x)f(a)-g(a)f(x))/(x-a) is

If f(a)=2,f'(a)=1,g(a)=-3,g'(a)=-1 then Lim_(xtoa)(f(a)g(x)-f(x)g(a))/(x-a)=