Home
Class 12
MATHS
If | vec a|= a\ a n d\ | vec b|=b, prove...

If `| vec a|= a\ a n d\ | vec b|=b,` prove that `( vec a/(a^2)- vec b/(b^2))^2=(( vec a- vec b)/(a b))^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If | vec a|=a and | vec b|=b , prove that ( vec a/(a^2)- vec b/(b^2))^2 = (( vec a- vec b)/(a b))^2 .

If |a|=a and |vec b|=b, prove that ((vec a)/(a^(2))-(vec b)/(b^(2)))^(2)=((vec a-vec b)/(ab))^(2)

If |vec a|=vec a and |vec b|, prove that ((vec a)/(a^(2))-(vec b)/(b^(2)))^(2)=((vec a-vec b)/(ab))^(2)

If |vec a|=a and |vec b|=b then prove that ((vec a)/(a^(2))-(vec b)/(b^(2)))=((vec a-vec b)/(ab))^(2)

Prove that (vec(a)-vec(b)) xx (vec(a) +vec(b))=2(vec(a) xx vec(b))

If vec a and vec b are orthogonal vectors, prove that (vec a + vec b)^(2) = (vec a - vec b)^(2) .

For any vector vec a\ a n d\ vec b prove that | vec a+ vec b|lt=| vec a|+| vec b|dot

For any two vectors vec a and vec b ,prove that (vec a xxvec b)^(2)=|vec a|^(2)|vec b|^(2)-(vec a*vec b)^(2)

For any two vectors vec a and vec b, prove that ((vec a) / (| vec a | ^ (2)) - (vec b) / (| vec b | ^ (2))) ^ (2) = ((vec a-vec b) / (| vec a || vec b |)) ^ (2)

If vec a and vec b be perpendicular vectors, then prove that (vec a + vec b)^(2) = (vec a - vec b)^(2) .