Home
Class 12
MATHS
The value of (sqrt2 + sqrt barz)^4+ and...

The value of `(sqrt2 + sqrt barz)^4+ and (sqrt2 - sqrt barz)^4` are respectively(where `z = 4+ 3 sqrt20 i, i = sqrt-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (sqrt(2)+sqrt(bar(z)))^(4)+ and (sqrt(2)-sqrt(bar(z)))^(4) are respectively(where z=4+3sqrt(20)i,i=sqrt(-1))

The value of { 1/(sqrt6 - sqrt5) - 1/(sqrt5 - sqrt4) + 1/(sqrt4 - sqrt3) - 1/(sqrt3 - sqrt2) + 1/(sqrt2 - 1)} is :

The value of (1-sqrt2) + (sqrt2-sqrt3)+(sqrt3-sqrt4)+ ............ + (sqrt15-sqrt16) is

Determine the value of ............... (1)/(sqrt1 +sqrt2) +(1)/(sqrt2 + sqrt3) +(1)/(sqrt3 + sqrt4) + ……+ (1)/(sqrt120 + sqrt121)

The value of {1/((sqrt(6) - sqrt(5))) + 1/((sqrt(5) + sqrt(4))) + 1/((sqrt(4) + sqrt(3))) - 1/((sqrt(3) - sqrt(2))) + 1/((sqrt(2) - 1))} is :

Evaluate : 1/( 1 + sqrt (2) ) + 1/( sqrt(2) + sqrt (3) ) + 1/ ( sqrt(3) + sqrt (4) )