Home
Class 11
MATHS
If int(f^(prime)(x)g(x)-g^(prime)(x)f(x)...

If `int(f^(prime)(x)g(x)-g^(prime)(x)f(x))/((f(x)+g(x))sqrt(f(x)g(x)-g^2(x)))d x=sqrt(m)tan^(- 1)(sqrt((f(x)-g(x))/(ng(x))+C)` where `m,n in N` and 'C' is constant of integration `(g(x) > 0)`. Find the value

Promotional Banner

Similar Questions

Explore conceptually related problems

int((f'(x)g(x)+f(x)g'(x)))/((1+(f(x)g(x))^(2)))dx is where C is constant of integration

int_( is )((f(x)g'(x)-f'(x)g(x))/(f(x)g(x)))*(log(g(x))-log(f(x))dx

int(f(x)*g'(x)-f'(x)g(x))/(f(x)*g(x)){log g(x)-log f(x)}dx

If int(x-1)/(x^(2)sqrt(2x^(2)-2x-1))dx=(sqrt(f(x)))/(g(x))+c then the value of f(x) and g(x) is

Evaluate int[f(x)g^(n)(x)-f^(n)(x)g(x)]dx

If I=int(x^(3)-1)/(x^(5)+x^(4)+x+1)dx=(1)/(4)ln(f(x))-ln(g(x))+c (where, c is the constant of integration) and f(0)=g(0)=1 ,then the value of f(1).g(1) is equal to

If (f(x))/(g(x))=h(x) where g(x)=sqrt(1-|(x^(2))/(x-1)|) and h(x)=(1)/(sqrt(|x-1|-[x])) then the domain of f(x)

Let f(x)= [(g(x)-g(-x))/(f(x)+f(-x))]^(m) such that m =2n in N and f(-x) ne -f(x) then f(x) is

f(x)=x^(2)+xg'(1)+g''(2)and g(x)=f(1)x^(2)+xf'(x)+f'(x). The domain of the function sqrt((f(x))/(g(x))) is