Home
Class 12
MATHS
If omega is non-real cube root of unity ...

If `omega` is non-real cube root of unity and matrix P=`[[1,omega^(3),omega^(2)],[omega,1,omega],[omega^(2),omega,1]]` then `det(p)`=

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is a complex cube root of unity.Show that Det[[1,omega,omega^(2)omega,omega^(2),1omega^(2),1,omega]]=0

If omega is a complex cube root of unity then the matrix A = [(1, omega^(2),omega),(omega^(2),omega,1),(omega,1,omega^(2))] is a

If omega is the cube root of unity,prove that det[[omega^(6),omega^(3),omega^(8)omega^(8),omega^(7),1]]=3

If omega is a cube root of unity , then |(x+1 , omega , omega^2),(omega , x+omega^2, 1),(omega^2 , 1, x+omega)| =

if omega!=1 is a complex cube root of unity, and x+iy=|[1,i,-omega],[-I,1,omega^2],[omega,-omega^2,1]|

If omega is a cube root of unity and A=[(1,1,1),(1,omega,omega^(2)),(1,omega^(2),omega)] , then A^(-1) equal to

If omega ne 1 is a cube root of unity, then 1, omega, omega^(2)

If omega is a non-real cube root of unity,then the value of (1-omega+omega^(2))^(5)+(1+omega-omega^(2))^(5) is