Home
Class 11
MATHS
If f: R rarr R defined by f(x)={{: (a^(...

If `f: R rarr R` defined by `f(x)={{: (a^(2)cos^(2)x+x^(2)sin^(2)x , x <= 0), (e^(ax+b) , x > 0) :}` is continuous then
(A) `b=2log|a|`
(B) `2b=log|a|`
(C) `b=log|2a|`
(D) `b^(2)=log|a|`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the function f(x) defined as f(x) defined as f(x)={3,x=0(1+(ax+bx^(3))/(x^(2)))^((1)/(x)),x>0 is continuous at x=0, then a=0 b.b=e^(3) c.a=1 d.b=(log)_(e)3

If f(x)=((2^(x)-1)^(3))/(sin((x)/(p))log(1+(x^(2))/(3))) is continuous at x=0 and f(0)=6(log2)^(3) then p= (A) 1 (B) 2 (C) 3 (D) 4

If f(x) is continuous at x=0 , where f(x)=(log(2+x)-log(2-x))/(tan x) , for x!=0 , then f(0)=

int_(log(1/2))^(log2) log(x+sqrt(x^2+1))dx= (A) 2log2 (B) 1-log2 (C) 1+log2 (D) 0

If f(x) is continuous at x=0 , where f(x)=(log(1+x+x^(2))+log(1-x+x^(2)))/(sin x) , for x!=0 , then f(0)=

If y = a cos (ln x)+ b sin (ln x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)=

(a^(log_(b)x))^(2)-5x^(log_(b)a)+6=0

int_(0tooo) log(1+x^2)/(1+x^2) dx equals-(A) log2(B) -a log2(C) 1/2 log2(D) -A/2 log2

If f(x) is continuous at x=0 , where f(x)=(log(1+x^(2))-log(1-x^(2)))/(sec x- cos x) , for x !=0 , then f(0)=