Home
Class 12
MATHS
Let int(dx)/(x^2008 +x)=(1)/(p)ln|(x^(q)...

Let `int(dx)/(x^2008 +x)=(1)/(p)ln|(x^(q))/(1+x^(r))|+C`, where `"C"` is a constant `"p,q,r" in "N"` and need not be distinct, then find the value of `(p+q)/(r)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If int(dx)/(x^(2008)+x)=(-1)/(p)log((x^(q))/(1+x^(r)))+c where p ,q, r in N then sum of digits of p+q+r

If p,q,r be three distinct real numbers, then the value of (p+q)(q+r)(r+p), is

x^(p-q).x^(q-r).x^(r-p)

int (dx)/(x ^(2014)+x)=1/p ln ((x ^(q))/(1+ x ^(r)))+C where p,q r in N then the value of (p+q+r) equals (Where C is constant of integration)

If a!=p,b!=q,c!=r and det[[p,b,ca,q,ca,b,r]]=0, then find the value of (p)/(p-a)+(q)/(q-b)+(r)/(r-c)

If lim_(x rarr0)(x+ln(sqrt(x^(2)+1)-x))/(x^(3))=(p)/(q) where p and q are coprimes then find the value of |p^(2)-q^(2)|

sqrt(x^(p-q))sqrt(x^(q-r))sqrt(x^(r-p))=1

If the function g(x) {{:((e^(px) + log _(e) (1+4x)+q)/(x^(3))","x ne 0),(r"," x=0):} continuous at x=0 , then find the values of p,q and r.

If p inR and q = log_(x) (p+sqrt(p^(2)+1)) , then find the value of p in terms of x and q.