Home
Class 12
MATHS
Let z=cos theta+i sin theta then the val...

Let `z=cos theta+i sin theta` then the value of `sum_(m=1)^(30)Im(z^(2m-1))` at `theta=2^(@)` is.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let z=cos theta+i sin theta. Then the value of sum_(m rarr1-15)Img(z^(2m-1)) at theta=2^(@) is: 1.(1)/(sin2^(@)) 2.(1)/(3sin2^(@))3*(1)/(sin2^(@))4*(1)/(4sin2^(@))

If z=cos theta+i sin theta, then the value of (z^(2n)-1)/(z^(2n)+1)(A)i tan n theta(B)tan n theta(C)i cot n theta(D)-i tan n theta

If sum_(i)^(n)cos theta_(i)=n, then the value of sum_(i=1)^(n)sin theta_(i)

If (sin theta + cos theta)/(sin theta - cos theta) = (5)/(4) , the value of (tan^(2) theta + 1)/(tan^(2) theta - 1) is

Statement I If 2 cos theta + sin theta=1(theta != (pi)/(2)) then the value of 7 cos theta + 6 sin theta is 2. Statement II If cos 2theta-sin theta=1/2, 0 lt theta lt pi/2 , then sin theta+cos 6 theta = 0 .