Home
Class 11
MATHS
Lt(x rarr4^(+))(x^(2)-7x+12)/(x-[x])=[ w...

`Lt_(x rarr4^(+))(x^(2)-7x+12)/(x-[x])`=[ where [ ] denotes G.I.F.]

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr0)x^(2)[(1)/(x^(2))] where [.] denotes G.L.F.is

lim_(x rarr1)(x^(2)-7x+12)/(x^(2)+4-3x-4)

Lt_(x rarr0)[x^(2)+x+sin x]=( where [^(*)] denotes GIF )

Solve [x]^2-7[x]+10lt0 .where [.] denotes GIF

The range of the function f(x)=log[sec^(-1)(x^(2)+2x+3)] , where [.] denotes G.I.F.

The value of int_((pi)/(4))^((pi)/(2))[sin x+[(2x)/(pi)]]dx where [.] denotes G.I.F.

Let f(x)=(x^(2)+1)/([x]) , 1lexlesqrt(10) .Then (where [ .] denotes the G.I.F) range of f(x)

Range of f(x) =log _((x))(9-x ^(2)), where [.] denotes G.I.E. is :

The function f(x)=x^2e^(-2x),x > 0. If l is maximum value of f(x) find [l^(-1)] (where [ ] denotes G.I.F.).

For x in(0, (pi)/(2)) If int(tan x sqrt(sec x)(1+cos^(2)x))/(sqrt(cos x+sin^(2)x))dx=2sqrt(f(x)+1)+c and f((pi)/(3))=(3)/(2) then [f((pi)/(4))] = ( where [.] denotes G.I.F )