Home
Class 11
MATHS
lim(x->0)(a sin x-2sin2x)/(tan^(3)x) is ...

`lim_(x->0)(a sin x-2sin2x)/(tan^(3)x)` is finite,then a=

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(2sin x-sin2x)/(x^(3))

If lim_(xrarr0)(sin2x-asinx)/(x^(3)) exists finitely, then the value of a is

If L=lim_(x rarr0)(sin2x+a sin x)/(x^(3)) is finite,then find the value of aandL.

If lim_(xrarr0)(2a sin x-sin 2x)/(tan^(3)x) exists and is equal to 1, then the value of a is

lim_(x rarr0)(tan2x-sin2x)/(x^(3))

if L=lim_(x rarr0)(sin2x+a sin x)/(x^(3)) is finite then find the value of a&L

If lim_(x rarr0)(a cos x+bx sin x-5)/(x^(4)) is finite the a=

if lim_(x rarr0)(sin2x+a sin x)/(x^(3)) be finite,then the value of a is

If lim_(x rarr o)(sin2x+a sin x)/(x^(3)) be finite,then the value a and the limit are respectively given by