Home
Class 11
MATHS
Lim(x->0)(1-cos x-cos2x+cos x cos2x)/(x^...

`Lim_(x->0)(1-cos x-cos2x+cos x cos2x)/(x^(4))`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(1-cos x-cos2x+cos x*cos2x)/(x^(4)) = (A) 1 (B) 2 (C) 3 (D) 4

lim_(x rarr0)(1-cos x-cos2x+cos x*cos2x)/(x^(4)) = (A) 1 (B) 2 (C) 3 (D) 4

lim_(x rarr0)(1-cos x-cos2x+cos x*cos2x)/(x^(4)) = (A) 1 (B) 2 (C) 3 (D) 4

Evaluate: ("Lim")_(x->0)(1-cosx cos2x cos3x)/(x^2)

If lim_(x rarr0)(1-cos x*cos2x*cos3x...cos nx)/(x^(2)) has the value equal to 263, find the value of n ( where n in N)

lim_(x->0) (cos2x-cos4x)/(cos3x-cos5x) =

lim_(x->0) (1-cos x cos 2x cos 3x)/ (sin^2 2x) is equal to a) 3/4 b) 7/4 c) 7/2 d) -3/4

lim_(x rarr0)(cos7x-cos9x)/(cos x-cos5x)

lim_(x rarr0)(1-cos x sqrt(cos2x))/(x^(2))

lim_(x-gt0)(cos2x-cos3x)/(cos4x-1)