Home
Class 11
MATHS
If S=(4)/(1.2.3)+(5)/(2.3.4)+(6)/(3.4.5)...

If `S=(4)/(1.2.3)+(5)/(2.3.4)+(6)/(3.4.5)+(7)/(4.5.6).........` up to 'n' terms & `S=K-((2n+5))/(2(n+1)(n+2)),` Then `K =?`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove 1.4.7+2.5.8+3.6.9+....... upto n terms =(n)/(4)(n+1)(n+6)(n+7)

Find sum the series (n)/(1.2*3)+(n-1)/(2.3*4)+(n-2)/(3.4*5)+......... up to n terms..-

2.5+3.8+4.11+.....+ upto n terms =n(n^(2)+4n+5), n in N

3.6+4.7+5.8+.....+(n-2) terms =

(3)/(5)+(4)/(5^(2))+(3)/(5^(3))+(4)/(5^(4))+... to 2n terms

If the sum of n term of the series (5)/(1.2.3) + (6)/(2.3.4) + ( 7)/(3.4.5)+"…." is a/2 - (n+b)/((n+1)(n+2)) , then

(1)/(2.5)+(1)/(5.8)+(1)/(8.11)+... n terms =(A)(n)/(6n+4) (B) (n)/(3n+2)(C)(n)/(4n+6)(D)(1)/(2(2n+3))

If S_(n)=(1.2)/(3!)+(2.2^(2))/(4!)+(3.2^(2))/(5!)+...+ up to n terms, then sum of infinite terms is

Sum of n terms of the series (1)/(1.2.3.4.)+(1)/(2.3.4.5)+(1)/(3.4.5.6)+...