Home
Class 12
MATHS
The length of the perpendicular form ...

The length of the perpendicular form the origin to the plane passing through the point `a` and containing the line ` vec r= vec b+lambda vec c` is a. `([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c+ vec cxx vec a|)` b. `([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c|)` c. `([ vec a vec b vec c])/(| vec bxx vec c+ vec cxx vec a|)` d. `([ vec a vec b vec c])/(| vec cxx vec a+ vec axx vec b|)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a+ vec b + vec c= 0 , show that vec axxvec b= vec bxx vec c= vec cxx vec a .

If vec a+2 vec b+3 vec c=0,t h e n vec axx vec b+ vec bxx vec c+ vec cxx vec a= a. 2( vec axx vec b) b. 6( vec bxx vec c) c. 3( vec cxx vec a) d. vec0

If vec a+2 vec b+3 vec c=0,t h e n vec axx vec b+ vec bxx vec c+ vec cxx vec a= 2( vec axx vec b) b. 6( vec bxx vec c) c. 3( vec cxx vec a) d. vec0

If vec a+2 vec b+3 vec c=0,t h e n vec axx vec b+ vec bxx vec c+ vec cxx vec a= a. 2( vec axx vec b) b. 6( vec bxx vec c) c. 3( vec cxx vec a) d. vec0

If vec a+ vec b+ vec c = vec 0 then prove that vec axx vec b= vec bxx vec c = vec cxxvec a .

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec a.vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec b.vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec c. vec d)/([ vec a vec b vec c])( vec axx vec b)

Let vec a , vec b ,and vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a ]= [vec a vec b vec c]^2

Let vec a , vec b ,and vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a ]= [vec a vec b vec c]^2

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec adot vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec bdot vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec cdot vec d)/([ vec a vec b vec c])( vec axx vec b)

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec adot vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec bdot vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec cdot vec d)/([ vec a vec b vec c])( vec axx vec b)