Home
Class 6
MATHS
" 24."2x^(2)+3x(1-2x^(3))+x(x+1)...

" 24."2x^(2)+3x(1-2x^(3))+x(x+1)

Promotional Banner

Similar Questions

Explore conceptually related problems

Check whether the following are quadratic equations : (1) (x-1)^(2)=2(x-3) (2) x^(2)-2x=(-2)(3-x) (3) (x-2)(x+1)=(x-1)(x+3) (4) (x-3)(2x+1)=x(x+5) (5) (2x-1)(x-3)=(x+5)(x-1) (6) x^(2)+3x+1=(x-2)^(2) (7) (x+2)^(3)=2x(x^(2)-1) (8) x^(3)-4x^(2)-x+1=(x-2)^(3)

Find the GCD for each pair of the following polynomials 12(x^(4)-x^(3)), 8(x^(4)-3x^(3)+2x^(2)) whose LCM is 24^(3)(x-1)(x-2)

Maximum value of the expression (10x^(12))/(x^(24)+2x^(12)+3x^(16)+3x^(8)+1)

Let tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^2)) , where |x|<1/(sqrt(3)) . Then a value of y is : (1) (3x-x^3)/(1-3x^2) (2) (3x+x^3)/(1-3x^2) (3) (3x-x^3)/(1+3x^2) (4) (3x+x^3)/(1+3x^2)

Let tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^2)) , where |x|<1/(sqrt(3)) . Then a value of y is : (1) (3x-x^3)/(1-3x^2) (2) (3x+x^3)/(1-3x^2) (3) (3x-x^3)/(1+3x^2) (4) (3x+x^3)/(1+3x^2)

Let tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^2)) , where |x|<1/(sqrt(3)) . Then a value of y is : (1) (3x-x^3)/(1-3x^2) (2) (3x+x^3)/(1-3x^2) (3) (3x-x^3)/(1+3x^2) (4) (3x+x^3)/(1+3x^2)

(i) (x ^ (3) + 2x ^ (2) + 3x) -: 2x (ii) (10x-25) - :( 2x-5) (iii) (x (x + 1) (x + 2 ) (x + 3)) - :( x (x + 1))

Simplify: (x^(3)-2x^(2)+3x-4)(x-1)-(2x-3)(x^(2)-x+1)

Let x_(i)in[-1,1] for i=1,2,3,...24, such that _(x_(1))+sin^(-1)x_(2)+...+sin^(-1)x_(24)=12 pi then the value of x_(2)+...+24x_(24) is x_(1)+2x_(2)+3x_(3)+...+24x_(24) is