Home
Class 6
MATHS
-a - [a + {a + b - 2a - (a - 2b)} - b]...

-a - [a + {a + b - 2a - (a - 2b)} - b]

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of ( a + b )^2 - 2 ( a - b )^2 + ( a - b ) ( a + b )

Three vertices of a parallelogram are (a + b ,a - b ) , (2a + b, 2a - b), and (a - b, a + b) . Find the 4th vertex.

Find the value of ( a^2/b^2 + b^2/a^2 ) is ( a ) ( a/b + b/a )^2 - 2 ( b ) ( a/b + b/a )^2 + 2 ( c ) ( a/b + b/a )^2 + 4 ( d ) ( a/b + b/a )^2 - 4

{:("Column A",a = 49"," b = 59,"Column B"),((a^2 - b^2)/(a - b),,(a^2 - b^2)/(a + b)):}

Evaluate : (iii) ((a)/(2b ) + (2b )/( a) ) ( ( a)/( 2b ) - (2b)/( a))

Three vertices of a parallelogram are (a+b ,\ a-b),\ \ (2a+b ,\ 2a-b),\ (a-b ,\ a+b) . Find the fourth vertex.

Verify that (a ^(2) - b ^(2)) (a ^(2) + b ^(2)) + (b ^(2) - c ^(2)) (b ^(2) + c ^(2)) + (c ^(2)-a ^(2)) + (c ^(2) + a ^(2)) = 0

Prove |[1+a^2-b^2, 2 a b, -2 b],[ 2 a b, 1-a^2+b^2, 2 a],[ 2 b, -2 a, 1-a^2-b^2]|=(1+a^2+b^2)^3

What is the value of {((a+b)^(2) - (a^(2) +b^(2)))/((a+b)^(2) - (a-b)^(2))}?

In Q. No 126, c= (a) b (b) 2b (c) 2b^2 (d) -2b