Home
Class 14
MATHS
If logx+logy=log(x+y), then a. x=y b. x ...

If `logx+logy=log(x+y)`, then a. `x=y` b. `x y=1` c. `y=(x-1)/x` d. `y=x/(x-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If log x+log y=log(x+y), then a.x=ybxy=1 c.y=(x-1)/(x) d.y=(x)/(x-1)

if logx - logy = 1 and x+y = 11 then x = ______

If log((x+y)/2)=1/2(logx+logy) ,then prove that x=y

If log((x+y)/2) = 1/3{log x + logy + log(x+y)} , then prove that (x^2)/y + (y^2)/x = 5(x+y) .

If (logx)/(y-z) = (logy)/(z-x) = (logz)/(x-y) , then prove that (i) x^(x) . y^(y) . z^(z) = 1 .

If log x log y log z=(y-z)(z-x)(x-y) then a )x^(y)*y^(z)*z^(x)=1 b) x^(2)y^(2)z^(2)=1c)root(z)(x)*root(y)(y)*root(z)(z)1=d) None of these

If log((x+y)/3)=1/2(logx+logy) ,then prove that x/y+y/x=7

If log ((x+y)/(3))=(1)/(2)(logx+logy)," then "(dy)/(dx)=

If (log x)/(y-z)=(logy)/(z-x) =(logz)/(x-y) , then prove that: x^x y^y z^z=1