Home
Class 11
MATHS
[" Frample "7" Prove that "],[qquad 1^(2...

[" Frample "7" Prove that "],[qquad 1^(2)+2^(2)+...+n^(2)>(n^(3))/(3),n in N]

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 1^(2)+2^(2)+...+n^(2)>(n^(3))/(3)n in N

Prove that 1^(2) +2^(2)+ ….+n^(2) gt (n^(3))/(3) , n in N

Prove that 1^(2) +2^(2)+ ….+n^(2) gt (n^(3))/(3) n in N

Prove that, 1^2 + 2^2 + …..+ n^2 gt (n^3)/(3) , n in N

Prove that : 1^(2)+2^(2)+3^(2)+...+n^(2)=(n(n+1)(2n+1))/(6)

Prove that 1^(2)+2^(2)+3^(2)+.....+n^(2)=(n(n+1)(2n+1))/6

Prove that: 1^2+2^2+3^2.....+n^2>(n^3)/3, n in N

Prove that : 1^(3)+2^(3)+3^(3)++n^(3)={(n(n+1))/(2)}^(2)

Prove that ((2n)!)/(2^(2n)(n!)^(2))<=(1)/(sqrt(3n+1)) for all n in N

Prove that 1^1*2^2*3^3....n^nle((2n+1)/3)^((n(n+1))/2) .