Home
Class 11
MATHS
" 15.If "tan20^(@)=lambda" prove that "(...

" 15.If "tan20^(@)=lambda" prove that "(tan160^(@)-tan110^(@))/(1+tan160^(@)*tan110^(@))=(1-lambda^(2))/(2 lambda)

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan20^(@) = lambda then show that (tan 160^(@) -tan 110^(@))/(1+tan160^(@).tan110^(@)) = (1-lambda^2)/(2lambda) .

If tan 20^(@) =lamda, then (tan 160^(@) -tan 110^(@))/(1+ (tan 160^(@)) (tan 110^(@)))=

If tan 40^(@)= lambda , then (tan 140^(@)-tan 130^(@))/(1+ tan 140^(@) tan 130^(@))=

If tan 40^(@) = lambda , then (tan 140^(@) - tan 130^(@))/(1 + tan 140^(@) tan 130^(@)) =

If tan 20^@ =p , " then " (tan 160^@ - tan 110^(@))/(1+ tan 160^(@) tan 110^(@))=

(i) If tan 20^(@) = lambda then show that (tan 610^(@) + tan 700^(@))/(tan 560^(@) - tan 470^(@))=(1-lambda^(2))/(1+lambda^(2))

If tan20^@=lamda , then (tan160^@-tan110^@)/(1+(tan160^@)(tan110^@))=

If tan20^(@)=p then prove that = (tan610^(@)+tan700^(@))/(tan 560^(@)-tan470^(@)) = (1-p^(2))/(1+p^(2))