Home
Class 12
MATHS
int(dx)/(x^(2)+a^(2))=k cot^(-1)(x)/(a)+...

int(dx)/(x^(2)+a^(2))=k cot^(-1)(x)/(a)+c

Promotional Banner

Similar Questions

Explore conceptually related problems

If int (x^(2)-a^(2))/(x^(2)+a^(2))dx=x+k "tan"^(-1)(x)/(a)+c then k=

int(dx)/(1+cot^(2)x)

int(dx)/(sin^(2)x+Tan^(2)x)=(-1)/(l)cot x-(1)/(k sqrt(2))Tan^(-1)((tan x)/(sqrt(2)))+c then (k)^l=

int(dx)/(sin^(2)x+tan^(2)x)=(-1)/(l)cot x-(1)/(k sqrt(2))Tan^(-1)((tan x)/(sqrt(2)))+c then (k)^l=

The value of int((x^(2)+1))/((x^(4)-x^(2)+1)cot^(-1)(x-(1)/(x)))dx will be

The value of int((x^(2)+1))/((x^(4)-x^(2)+1)cot^(-1)(x-(1)/(x)))dx will be

int ((x ^(2) -x+1)/(x ^(2) +1)) e ^(cot^(-1) (x))dx =f (x) .e ^(cot ^(-1)(x)) +C where C is constant of integration. Then f (x) is equal to:

int ((x ^(2) -x+1)/(x ^(2) +1)) e ^(cot^(-1) (x))dx =f (x) .e ^(cot ^(-1)(x)) +C where C is constant of integration. Then f (x) is equal to: