Home
Class 11
MATHS
" Prove that in any "/ABC,(abcs)sin(A)/(...

" Prove that in any "/_ABC,(abcs)sin(A)/(2)*sin(B)/(2)*sin(C)/(2)=Delta^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Delta ABC,abc sin((A)/(2))sin((B)/(2))sin((C)/(2))=

In any triangle ABC, prove that following: a(sin A)/(2)sin((B-C)/(2))+b(sin B)/(2)sin((C-A)/(2))+sin((A-B)/(2))=0

In triangle ABC , prove that sin(A/2)+sin(B/2)+sin(C/2)le(3)/(2) .

In any /_\ABC ,prove that sin(B-C)/(sin(B+C))=(b^2-c^2)/(a^2)

In any triangle ABC ,prove that following: (a+b)/(c)=(cos((A-B)/(2)))/((sin C)/(2))

In any Delta ABC prove that :sin(A-B)(sin(A-B))/(sin(A+B))=(a^(2)-b^(2))/(c^(2))

In a triangle ABC, prove that :a sin((A)/(2)+B)=(b+c)sin((A)/(2))

In any triangle ABC prove that (a^(2)sin(B-C))/(sinA)+(b^(2)sin(C-A))/(sinB)+(c^(2)sin(A-B))/(sinC)=0