Home
Class 12
MATHS
" *ii) If "mu+iv=(2+i)/(z+3)" and "z=x+i...

" *ii) If "mu+iv=(2+i)/(z+3)" and "z=x+iy mu" and "

Promotional Banner

Similar Questions

Explore conceptually related problems

If u+iv=(2+i)/(z+3) and z=x+iy find u, v

If z+sqrt(2)|z+1|+i=0 and z=x+iy then

Find the values of x and y from the following : (i) (3x -7)+2iy=-5y+(5+ x)i (ii) 2x i+12= 3y-6i (iii) z=x+iy and i(z+2)+1=0 (iv) ((1+i)x-2i)/(3+i)+((2-3i)y+i)/(3-i)=i (v) (3x-2iy)(2+i)^(2)=10(1+i)

Find the values of x and y from the following : (i) (3x -7)+2iy=-5y+(5+ x)i (ii) 2x i+12= 3y-6i (iii) z=x+iy and i(z+2)+1=0 (iv) ((1+i)x-2i)/(3+i)+((2-3i)y+i)/(3-i)=i (v) (3x-2iy)(2+i)^(2)=10(1+i)

Find the values of lambda and mu so that the system of equations (i) 2x-3y+5z =12 (ii) 3x+ y+lambda z=mu (iii) x-7y+8z =17 has

If z= x+iy and the amplitude of (z-2-3i) is (pi)/(4) . Find the relation between x and y.

The equation of the locus of z such that |(z-i)/(z+i)|=2 , where z=x+iy is a complex number,is 3x^(2)+3y^(2)+10y+k=0 then k=

The locus of z satisfying the inequality |(z+2i)/(2z+i)|lt1 where z = x + iy , is :

The locus of z satisfying the inequality |(z+2i)/(2z+1)|<1, where z=x+iy, is :