Home
Class 12
MATHS
The function a^(2)sec^(2)x+b^(2)cos ec^(...

The function `a^(2)sec^(2)x+b^(2)cos ec^(2)x` attains minimum value when

Promotional Banner

Similar Questions

Explore conceptually related problems

int(sec^(2)x)/(cos ec^(2)x)dx

Range of f(x)=sec^(2)x+4cos ec^(2)x

The function f(x)= x^(2)-4x, x in [0,4] attains minimum value at

The number of values of x where the function f(x)=cos x+cos(sqrt(2)x) attains its maximum value is

tan^(2)A+cot^(2)A=sec^(2)A cos ec^(2)A-2

If the maximum value of (sec^(-1)x)^(2)+(cos ec^(-1)x)^(2) approaches a,the minimum value of (tan^(-1)x)^(3)+(cot^(-1)x)^(3) approaches b then (a+(b)/(pi)) is equal to

f(x)=cos^(2)x+sec^(2)x. Then minimum value of f(x) is _(-)