Home
Class 11
MATHS
If sin(x+y)=y cos(x+y) ,then prove that ...

If sin(x+y)=y cos(x+y) ,then prove that `(dy)/(dx)=-(1+y^(2))/(y^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

xy log(x+y)=1, prove that (dy)/(dx)=-(y(x^(2)y+x+y))/(x(xy^(2)+x+y))

If sin y=x sin(a+y), prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)

If xy log(x+y)=1, prove that (dy)/(dx)=-(y(x^(2)y+x+y))/(x(xy^(2)+x+y))

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)

If y=sin x*cos(2x) then prove that (dy)/(dx)=y[cot x-2tan2x]

If y=sin x*cos(2x) then prove that (dy)/(dx)=y[cot x-2tan2x]

If x sin(a+y)+sina.cos(a+y)=0 , then prove that (dy)/(dx) = (sin^(2)(a+y))/(sina)

If sin y=x sin(a+y), prove that (dy)/(dx)=(sin^(2)(a+y))/(sin a)

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(sin^(2)(a+y))/(sin a)