Home
Class 12
MATHS
Amplitude of (1+sqrt3i)/(sqrt3+1)is...

Amplitude of `(1+sqrt3i)/(sqrt3+1)`is

A

`pi/6`

B

`pi/4`

C

`pi/3`

D

`pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the amplitude (or argument) of the complex number \(\frac{1 + \sqrt{3}i}{\sqrt{3} + 1}\), we will follow these steps: ### Step 1: Identify the complex number We have the complex number in the form \(z = \frac{1 + \sqrt{3}i}{\sqrt{3} + 1}\). ### Step 2: Rewrite the complex number To find the amplitude, we can express \(z\) in the form \(a + bi\). We will multiply the numerator and the denominator by the conjugate of the denominator to simplify it. \[ z = \frac{(1 + \sqrt{3}i)(\sqrt{3} - 1)}{(\sqrt{3} + 1)(\sqrt{3} - 1)} \] ### Step 3: Simplify the denominator The denominator simplifies as follows: \[ (\sqrt{3} + 1)(\sqrt{3} - 1) = 3 - 1 = 2 \] ### Step 4: Simplify the numerator Now, we will simplify the numerator: \[ (1 + \sqrt{3}i)(\sqrt{3} - 1) = 1 \cdot \sqrt{3} + 1 \cdot (-1) + \sqrt{3}i \cdot \sqrt{3} + \sqrt{3}i \cdot (-1) \] \[ = \sqrt{3} - 1 + 3i - \sqrt{3}i \] \[ = (\sqrt{3} - 1) + (3 - \sqrt{3})i \] ### Step 5: Combine the results Now we can write \(z\) as: \[ z = \frac{(\sqrt{3} - 1) + (3 - \sqrt{3})i}{2} \] ### Step 6: Separate into real and imaginary parts Let \(a = \frac{\sqrt{3} - 1}{2}\) and \(b = \frac{3 - \sqrt{3}}{2}\). ### Step 7: Find the amplitude (argument) The amplitude (or argument) \(\theta\) can be found using the formula: \[ \tan \theta = \frac{b}{a} = \frac{\frac{3 - \sqrt{3}}{2}}{\frac{\sqrt{3} - 1}{2}} = \frac{3 - \sqrt{3}}{\sqrt{3} - 1} \] ### Step 8: Simplify the tangent expression Now we simplify \(\tan \theta\): \[ \tan \theta = \frac{3 - \sqrt{3}}{\sqrt{3} - 1} \] ### Step 9: Calculate the angle Using the known values of tangent, we find that: \[ \tan \frac{\pi}{3} = \sqrt{3} \quad \text{and} \quad \tan \frac{5\pi}{3} = -\sqrt{3} \] Since \(\tan \theta = \sqrt{3}\), we have: \[ \theta = \frac{\pi}{3} \] ### Final Answer Thus, the amplitude of the complex number \(\frac{1 + \sqrt{3}i}{\sqrt{3} + 1}\) is: \[ \theta = \frac{\pi}{3} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-1: Concept Builder (Topic -5)|10 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 27|15 Videos
  • CONIC SECTIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

The amplitude of (1+i sqrt(3))/(sqrt(3)+i) is (pi)/(3) b.-(pi)/(6) c.(pi)/(3) d.(pi)/(6)

(sqrt3 -1 )/(sqrt3 +1)

(sqrt3+i)/(-1-isqrt3)=?

If sqrt3=1.732 , then the value of (sqrt3+1)/(sqrt3-1) is

The value of ((1+sqrt(3)i)/(1-sqrt(3)i))^(64)+((1-sqrt(3)i)/(1+sqrt(3)i))^(64) is

The modulus and amplitude of (1+i sqrt(3))^(8) are respectively

If z=x+iy=z=x+iy=((1)/(sqrt(2))-(i)/(sqrt(2)))^(-25) ,where i=sqrt(-)1, then what is the fundamental amplitude of (z-sqrt(2))/(z-i sqrt(2))?

DISHA PUBLICATION-COMPLEX NUMBERS AND QUADRATIC EQUATIONS -Exercise -2 : Concept Applicator
  1. If f(z)=(7-z)/(1-z^2) , where z=1+2i , then |f(z)| is (|z|)/2 (b) |z| ...

    Text Solution

    |

  2. If z=x+i y, z^(1/3)=a-i b " and " x/a-y/b=lambda(a^2-b^2), then lambda...

    Text Solution

    |

  3. Amplitude of (1+sqrt3i)/(sqrt3+1)is

    Text Solution

    |

  4. If z=(3-i)/(2+i)+(3+i)/(2-i) then value of arg (zi) is

    Text Solution

    |

  5. If (y^2-5y+3)(x 62+x+1)<2x for all x in R , then fin the interval in ...

    Text Solution

    |

  6. Let x+1/x=1 and a, b and c are distict positive integer such that (x^(...

    Text Solution

    |

  7. If z=(3+7i)(a+ib), where a, b in Z-{0}, is purely imaginery, then mini...

    Text Solution

    |

  8. The value of lambda for which the sum of squares of roots of the equat...

    Text Solution

    |

  9. The set of all real numbers x for which x^2-|x+2| +x gt 0 is

    Text Solution

    |

  10. If alpha,beta are the roots of the equation ax^2+ bx +c =0, then alp...

    Text Solution

    |

  11. If log(1/2) ((x^2+6x+9)/(2(x+1)) )< - log2(x+1) then complete set of v...

    Text Solution

    |

  12. Solve: x^(2) + 2 = 0

    Text Solution

    |

  13. If a<b<c<d , then the roots of the equation (x-a)(x-c)+2(x-b)(x-d)=0 a...

    Text Solution

    |

  14. If the cube roots of unity are 1,w w^2,then the roots of the equation ...

    Text Solution

    |

  15. Find t values of the parameter a such that the rots alpha,beta of the ...

    Text Solution

    |

  16. If w is a complex cube root of unity, then the value of w^(99)+w^(100)...

    Text Solution

    |

  17. If alpha and beta are the roots of the equation x^2+px+(3p)/4=0 such t...

    Text Solution

    |

  18. The quadratic equations x^2""6x""+""a""=""0""a n d""x^2""c x""+""6"...

    Text Solution

    |

  19. If x be real, then the minimum value of x^(2)-8x+17 is

    Text Solution

    |

  20. If one root of the equations ax^(2)+bx+c=0 and bx^(2)+cx+a=0, (a, b, c...

    Text Solution

    |