Home
Class 12
MATHS
Solution x^((log10 x)^2-(3log10)^(x+1))>...

Solution `x^((log_10 x)^2-(3log_10)^(x+1))>1000` for `x in R` is

A

`(10,oo)`

B

`(100,oo)`

C

`(1000,oo)`

D

`(1,oo)`

Text Solution

Verified by Experts

The correct Answer is:
(c )
Promotional Banner

Topper's Solved these Questions

  • LINEAR INEQUALITIES

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos
  • LINEAR INEQUALITIES

    DISHA PUBLICATION|Exercise Exercise -1 : Concept Builder (Topic 3)|7 Videos
  • LIMITS AND DERIVATIVES

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos
  • MATHEMATICAL REASONING

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

Solution set of x^((log_(10)x)^(2)-3log_(10)x+1)gt 1000 for x epsilon R is

The set of all real numbers satisfying the inequation x^((log_(10) x)^(2)-3(log10 x)+1) gt 1000 , is

Solve the following inequation . (xv) x^((log_10x)^2-3log_10x+1)gt1000

Solve |x-1|^((log_(10)x)^(2)-log_(10)x^(2))=|x-1|^(3)

Solve: |x-1|^((log_(10)x)^(2)-log_(10)x^(2))=|x-1|^(3)

Let I_(1) : (log_(x)2) (log_(2x)2) (log_(2)4x)gt1 I_(2) : x^((log_(10)x)^(2)-3(log_(10)x)+1) gt 1000 and solution of inequality I_(1) is ((1)/(a^(sqrt(a))),(1)/(b))cup(c, a^(sqrt(a))) and solution of inequality I_(2) is (d, oo) then answer the following Both root of equation dx^(2) - bx + k = 0, (k in R) are positive then k can not be

If x_1and \ x_2 are the solution of the equation x^(3log_10^3x-2/3log_(10)x)=100 root(3)10 then- a. x1x2=1 b. x1*x2=x1+x2 c. log_(x2)x1=-1 d. log(x_1*x_2)=0

log_(10)^(x)-log_(10)sqrt(x)=2log_(x)10. Find x