Home
Class 12
MATHS
In the binomial expansion (a+bx)^(-3) = ...

In the binomial expansion `(a+bx)^(-3) = ( 1)/( 8 ) + (9)/( 8)x +"…….." ,` then the value of a and b are `:`

A

a=2,b =3

B

a=2,b = -6

C

a=3,b =2

D

a= -3, b = 2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( a \) and \( b \) in the binomial expansion of \( (a + bx)^{-3} \) given that it equals \( \frac{1}{8} + \frac{9}{8}x + \ldots \). ### Step-by-Step Solution: 1. **Identify the Binomial Expansion Form**: The binomial expansion for \( (a + bx)^{-3} \) can be expressed using the binomial theorem: \[ (a + bx)^{-3} = a^{-3} \left(1 + \frac{bx}{a}\right)^{-3} \] Using the binomial expansion formula, we have: \[ (1 + u)^{-n} = 1 - nu + \frac{n(n+1)}{2!}u^2 - \ldots \] where \( u = \frac{bx}{a} \) and \( n = 3 \). 2. **Rewrite the Expansion**: Thus, we can write: \[ (a + bx)^{-3} = a^{-3} \left(1 - 3\frac{bx}{a} + \frac{3 \cdot 4}{2!}\left(\frac{bx}{a}\right)^2 - \ldots\right) \] This simplifies to: \[ = \frac{1}{a^3} - \frac{3b}{a^4}x + \ldots \] 3. **Compare with Given Expansion**: We are given: \[ \frac{1}{8} + \frac{9}{8}x + \ldots \] From the comparison, we can equate the constant terms and the coefficients of \( x \): - From the constant term: \[ \frac{1}{a^3} = \frac{1}{8} \implies a^3 = 8 \implies a = 2 \] - From the coefficient of \( x \): \[ -\frac{3b}{a^4} = \frac{9}{8} \] Substituting \( a = 2 \): \[ -\frac{3b}{2^4} = \frac{9}{8} \implies -\frac{3b}{16} = \frac{9}{8} \] 4. **Solve for \( b \)**: To isolate \( b \), multiply both sides by -16: \[ 3b = -16 \cdot \frac{9}{8} \implies 3b = -18 \implies b = -6 \] 5. **Final Values**: We have found: \[ a = 2, \quad b = -6 \] ### Conclusion: The values of \( a \) and \( b \) are: \[ \boxed{(2, -6)} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    DISHA PUBLICATION|Exercise EXERCISE-1 (CONCEPT BUILDER )|60 Videos
  • APPLICATION OF INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2: CONCEPT BUILDER|30 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 27|15 Videos

Similar Questions

Explore conceptually related problems

Find the binomial expansion of (1+x)^(-2)

Binomial expansion of (x+1)^(6)

If the binomial expansion of (a+bx)^(-2) is (1)/(4)-3x+......, then (a,b)=

If the middle term in the binomial expansion of ((1)/(x) + x sin x )^(10) is ( 63)/( 8) , then the value of 6sin^(2) x +sin x -2 is

If the fourth term in the binomial expansion of ((2)/(x) + x^(log_(8) x))^(6) (x gt 0) is 20 xx 8^(7) , then the value of x is (A) 8^(-2) (B) 8^(3) (C) 8 (D) 8^(2)

If the middle term in the binomial expansion of ((1)/(x)+x sin x^(10)) is equal to (63)/(8), find the value of x.

If a = 2 and b = 8 , then find the value of b/a + 9

The first 3 terms in the expansion of (a-5x)^(-2) are (1)/(4)+(5)/(4)x+bx^(2). Find the value of a, the value of b and the term in x^(3)?

For beta ne 0 , if the coefficient of x^(3) in the binomial expansion of (1 + betax)^(6) and the coefficient of x^(4) in the binomial expansion of (1 - betax)^(8) are equal, then the value of beta is

If (x)/(10!)=(1)/(8!)+(1)/(9!), find the value of x

DISHA PUBLICATION-BINOMIAL THEOREM -EXERCISE-2 (CONCEPT APPLICATOR)
  1. The expansion of 1/(4 - 3x)^(1/2) by binomial theowill be valid, if

    Text Solution

    |

  2. The value of {3^2003/28}is

    Text Solution

    |

  3. In the binomial expansion (a+bx)^(-3) = ( 1)/( 8 ) + (9)/( 8)x +"…….."...

    Text Solution

    |

  4. What is the last digit of 3^(3^(4n)) +1, where n is a natural number?

    Text Solution

    |

  5. Find the coefficient of x^5 in (1+2x+3x^2...........)^(-3/2)

    Text Solution

    |

  6. If f(x)=(x-1)(x-2)(x-3).......(x-50) find coeff. of x^50 and x^49

    Text Solution

    |

  7. If n is a positive integer, then (sqrt3 +i)^n+(sqrt3 -i)^n is

    Text Solution

    |

  8. Prove that (C0+C1)(C1+C2)(C2+C3)(C(n-1)+Cn)=(n+1)^n/(n!).c0.C1.C2........

    Text Solution

    |

  9. If (1 + ax)^n= 1 +8x+ 24x^2 +..... then the value of a and n is

    Text Solution

    |

  10. The sum of the series (2)/(1!) + (4)/(3!) + (6)/(5!) + ……. "to" oo ...

    Text Solution

    |

  11. If coefficient of a^2b^3c^4in(a+b+c)^m(w h e r em in N)i sL(L!=0) , t...

    Text Solution

    |

  12. The number of dissimilar terms in the expansion of (a+b)^(n) is n+1, ...

    Text Solution

    |

  13. The sum of rational term in (sqrt(2)+3 3+5 6)^(10) is equal to 12632 b...

    Text Solution

    |

  14. If the 7th tern in the binomial expansion of (3/((84)^(1/3)) +sqrt(3) ...

    Text Solution

    |

  15. If (+x)^n=sum(r=0)^n ar x^r&br=1+(ar)/(a(r-1))&prod(r=1)^n br=((101)^...

    Text Solution

    |

  16. The coefficients of x^(13) in the expansion of (1 - x)^(5) (1 + x...

    Text Solution

    |

  17. If x is so small that x^3 and higher powers of x may be neglectd, then...

    Text Solution

    |

  18. If (r+1)^(th) term is (3.5...(2r-1))/(r!) (1/5)^(r), then this is th...

    Text Solution

    |

  19. The the term independent in the expansion of [(t^(-1)-1)x+(t^(-1)+1)^(...

    Text Solution

    |

  20. If the third in the expansion of [x + x^(log 10x)]^(6) is 10^(6) ,...

    Text Solution

    |