Home
Class 10
MATHS
गुणनखंड प्रमेय के प्रयोग से बताएं कि p(x...

गुणनखंड प्रमेय के प्रयोग से बताएं कि p(x) का गुणनखंड q(x) है या नहीं, जहाँ
`p(x) = 2x^(3) + x^(2) -2x -1, q(x) = x -3`

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of the polynomials p(x) =x^(3) -x^(2) -2, q(x) =x^(2) -3x+ 1

The sum of the polynomials p(x) = x^(3) - x^(2) - 2, q(x) = x^(2) - 3x + 1

Divide p(x) by q(x) p(x)=2x^(2)+3x+1,g(x)=x+2

Determine whether q(x) is a factor of p(x) or not , p(x) = 2x^4 +9x^3 +6x^2 -11x -6 , q(x) = (x-1) .

Let P(x) = 4x^(2) - 3x + 2x^(3) + 5 and q(x) = x^(2) + 2x + 4 find p ( x) - q(x) .

If (x-3) is the HCF of x^(3) - 2x^(2) +px + 6 and x^(2) - 5x +q, find 6p +5q

If P (x) = (x^(3) + 1) (x-1) and Q (x) = (x^(2) -x +1) (x^(2) -3x +2) , then find HCF of P (x) and Q (x) .