Home
Class 12
MATHS
[5^(2),5^(3),5^(4)],[5^(3),5^(4),5^(5)],...

[5^(2),5^(3),5^(4)],[5^(3),5^(4),5^(5)],[5^(4),5^(6),5^(7)]|=0

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the determinant |(5^(2),5^(3),5^(4)),(5^(3),5^(4),5^(5)),(5^(4),5^(6),5^(7))| is -

The value of Delta= [[5^2 , 5^3 , 5^4],[ 5^3 , 5^4 , 5^5],[ 5^4 , 5^6 , 5^7 ]] is

The value of |[5^2 ,5^3, 5^4], [5^3, 5^4, 5^5], [5^4, 5^5, 5^6]| is (a) 5^2 (b) 0 (c) 5^(13) (d) 5^9

Find the sum of 10th term of the series (1)+(5+5^(2))+(5^(3)+5^(4)+5^(5))+(5+5^(6)+5^(7)+5^(8)+5^(9))+…

|{:(5^2,5^3,5^4),(5^1,5^2,5^3),(5^3,5^4,5^4):}|=.......

|{:(2,3,4),(3,4,5),(4,5,6):}|=0

(3)/(4)-(5)/(4^(2))+(3)/(4^(3))-(5)/(4^(4))+(3)/(4^(5))-(5)/(4^(6))+.....oo= ?

If A=[((2)/(3), 1,(5)/(3)),((1)/(3), (2)/(3), (4)/(3)),((7)/(3), 2, (2)/(3))] and B=[((2)/(5), (3)/(5), 1),((1)/(5), (2)/(5), (4)/(5)),((7)/(5),(6)/(5),(2)/(5))] , then compute 3A-5B .

If A=[((2)/(3), 1,(5)/(3)),((1)/(3), (2)/(3), (4)/(3)),((7)/(3), 2, (2)/(3))] and B=[((2)/(5), (3)/(5), 1),((1)/(5), (2)/(5), (4)/(5)),((7)/(5),(6)/(5),(2)/(5))] , then compute 3A-5B .

If A=[((2)/(3), 1,(5)/(3)),((1)/(3), (2)/(3), (4)/(3)),((7)/(3), 2, (2)/(3))] and B=[((2)/(5), (3)/(5), 1),((1)/(5), (2)/(5), (4)/(5)),((7)/(5),(6)/(5),(2)/(5))] , then compute 3A-5B .