Home
Class 11
MATHS
" 48."quad C(0)^(2n)C(n)-C(1)^(2n-2)C(n)...

" 48."quad C_(0)^(2n)C_(n)-C_(1)^(2n-2)C_(n)+C_(2)^(2n-4)C_(n)......" equals to "

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that ^nC_(0)^(2n)C_(n)-^(n)C_(1)^(2n-2)C_(n)+^(n)C_(2)^(2n-4)C_(n)-...=2^(n)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) *""^(2n)C_(n) - C_(1) *""^(2n-2)C_(n) + C_(2) *""^(2n-4) C_(n) -…= 2^(n)

Prove that : ""^(n)C_(0).""^(2n)C_(n)-""^(n)C_(1).""^(2n-2)Cn_(n)+""^(n)C_(2).""^(2n-4)Cn_(n)+......=2^n

Prove that, C_(0) *""^(2n)C_(n)-C_(1)*""^((2n-2))C_(n)+C_(2) *""^((2n-4))C_(n)-…..=2^(n)

The value of .^(n)C_(0) xx .^(2n)C_(r) - .^(n)C_(1)xx.^(2n-2)C_(r)+.^(n)C_(2)xx.^(2n-4)C_(r)+"…." is equal to

(n+2)C_(0)(2^(n+1))-(n+1)C_(1)(2^(n))+(n)C_(2)(2^(n-1))- is equal to

""^(2n)C_(n+1)+2. ""^(2n)C_(n) + ""^(2n) C_(n-1) =

(n+2)C_0(2^(n+1))-(n+1)C_1(2^(n))+(n)C_2(2^(n-1))-.... is equal to