Home
Class 11
MATHS
[" for a real number "x,[x]" denotes the...

[" for a real number "x,[x]" denotes the integral part "],[" of "x." the value of "],[[(1)/(2)]+[(1)/(2)+(1)/(100)]+[(1)/(2)+(2)/(100)]+...+[(1)/(2)+(99)/(100)]" is "]

Promotional Banner

Similar Questions

Explore conceptually related problems

For a real number x,[x] denotes the integral part of x. The value of [(1)/(4)]+[(1)/(4)+(1)/(00)]+[(1)/(4)+(2)/(100)]+[(1)/(4)+(3)/(100)]+.........+[(1)/(4)+(99)/(100)]=

If [x] denotes the integral part of x for real x, and S= [(1)/(4)]+[(1)/(4) +(1)/(200)]+[(1)/(4)+(1)/(100)] + [(1)/(4)+(3)/(200)] .....+ [(1)/(4)+ (199)/(200)] then S is

If [x] denotes the integral part of x for real x, and S= [(1)/(4)]+[(1)/(4) +(1)/(200)]+[(1)/(4)+(1)/(100)] + [(1)/(4)+(3)/(200)] .....+ [(1)/(4)+ (199)/(200)] then S is

If [x] denotes the integral part of [x] , find int_0^1[x]dx, .

If [x] denotes the integral part of x , find int_0^x[t+1]^3dt .

If [x] denotes the integral part of x , find int_0^x[t+1]^3dt .

Let f(n) = [1/2 + n/100] where [x] denote the integral part of x. Then the value of sum_(n=1)^100 f(n) is

Let f(n)=[1/2+n/100] where [x] denote the integral part of x. Then the value of sum_(n=1)^100f(n) is

Let f(n) = [1/4 + n/1000] , where [x] denote the integral part of x. Then the value of sum_(n=1)^(1000) f(n) is

Let f(n)=[(1)/(2)+(n)/(100)] where [x] denote the integral part of x. Then the value of sum_(n=1)^(100)f(n) is