Home
Class 14
MATHS
The ascending order of (2.89)^(0.5) , 2-...

The ascending order of `(2.89)^(0.5) , 2-(0.5)^2 , sqrt3` and `root(3)(0.008)` is

A

`2-(0.5)^2 , sqrt3 , root(3)(0.008), (2.89)^(0.5)`

B

`root(3)(0.008), (2.89)^(0.5), sqrt3, 2-(0.5)^2`

C

`root(3)(0.008), sqrt3, (2.89)^(0.5) , 2- (0.5)^2`

D

`sqrt3, root(3)(0.008) , 2- (0.5)^2, (2.89)^(0.5)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the ascending order of the given expressions: \( (2.89)^{0.5}, 2 - (0.5)^2, \sqrt{3}, \text{ and } \sqrt[3]{0.008} \), we will evaluate each expression step by step. ### Step 1: Evaluate \( (2.89)^{0.5} \) The expression \( (2.89)^{0.5} \) represents the square root of 2.89. \[ (2.89)^{0.5} = \sqrt{2.89} = \sqrt{\frac{289}{100}} = \frac{\sqrt{289}}{\sqrt{100}} = \frac{17}{10} = 1.7 \] **Hint:** To find the square root of a decimal, you can convert it to a fraction and simplify. ### Step 2: Evaluate \( 2 - (0.5)^2 \) Next, we calculate \( 2 - (0.5)^2 \). \[ (0.5)^2 = 0.25 \] \[ 2 - 0.25 = 1.75 \] **Hint:** Remember that squaring a number means multiplying it by itself. ### Step 3: Evaluate \( \sqrt{3} \) Now, we find the value of \( \sqrt{3} \). \[ \sqrt{3} \approx 1.732 \] **Hint:** You can use a calculator or approximate values to find the square root of numbers that are not perfect squares. ### Step 4: Evaluate \( \sqrt[3]{0.008} \) Finally, we calculate \( \sqrt[3]{0.008} \). \[ 0.008 = \frac{8}{1000} = \frac{2^3}{10^3} \] \[ \sqrt[3]{0.008} = \sqrt[3]{\frac{2^3}{10^3}} = \frac{\sqrt[3]{2^3}}{\sqrt[3]{10^3}} = \frac{2}{10} = 0.2 \] **Hint:** The cube root of a fraction can be found by taking the cube root of the numerator and the denominator separately. ### Step 5: Arrange in Ascending Order Now that we have evaluated all expressions, we have: 1. \( \sqrt[3]{0.008} = 0.2 \) 2. \( (2.89)^{0.5} = 1.7 \) 3. \( 2 - (0.5)^2 = 1.75 \) 4. \( \sqrt{3} \approx 1.732 \) Now, we can arrange these values in ascending order: \[ 0.2 < 1.7 < 1.732 < 1.75 \] Thus, the ascending order of the given expressions is: \[ \sqrt[3]{0.008}, (2.89)^{0.5}, \sqrt{3}, 2 - (0.5)^2 \] ### Final Answer: The ascending order is: \[ \sqrt[3]{0.008}, (2.89)^{0.5}, \sqrt{3}, 2 - (0.5)^2 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify sqrt 0.01 xx root(3)(0.008)

Evalutions : root3(27)+root3(0.008)

If a gt 1 , then arrange the following in ascending order. I. root3(root4(a^3)) II. root3(root5(a^4)) III. sqrt(root3(a)) IV. sqrt(root5(a^3))